- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dong, Shaoyang (2)
-
Yu, Xiong (Bill) (2)
-
Guo, Yuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dong, Shaoyang; Yu, Xiong (, Transportation Research Record: Journal of the Transportation Research Board)Frost heave can cause serious damage to civil infrastructure. For example, interactions of soil and water pipes under frozen conditions have been found to significantly accelerate pipe fracture. Frost heave may cause the retaining walls along highways to crack and even fail in cold climates. This paper describes a holistic model to simulate the temperature, stress, and deformation in frozen soil and implement a model to simulate frost heave and stress on water pipelines. The frozen soil behaviors are based on a microstructure-based random finite element model, which holistically describes the mechanical behaviors of soils subjected to freezing conditions. The new model is able to simulate bulk behaviors by considering the microstructure of soils. The soil is phase coded and therefore the simulation model only needs the corresponding parameters of individual phases. This significantly simplifies obtaining the necessary parameters for the model. The capability of the model in simulating the temperature distribution and volume change are first validated with laboratory scale experiments. Coupled thermal-mechanical processes are introduced to describe the soil responses subjected to sub-zero temperature on the ground surface. This subsequently changes the interaction modes between ground and water pipes and leads to increase of stresses on the water pipes. The effects of cracks along a water pipe further cause stress concentration, which jeopardizes the pipe’s performance and leads to failure. The combined effects of freezing ground and traffic load are further evaluated with the model.more » « less
An official website of the United States government
